Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY

COURSE PLAN

Academic Year 2019 - 2020

Program:	B E – Civil Engineering
Semester :	5
Course Code:	17CV52
Course Title:	Analysis of Indeterminate Structures
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	DR. K NARESH

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology

#29 Hesaraghatta main road, Chimney hills, Chikkabanavara Bangalore 560090. Ph 080-23721477 www.skit.org Email: skitprinci1@gmail.com

Table of Contents

17CV52 : Analysis of Indeterminate Structures	3
A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	
4. Course Prerequisites	
B. OBE PARAMETERS	4
1. Course Outcomes	4
2. Course Applications	5
3. Articulation Matrix	5
4. Mapping Justification	7
5. Curricular Gap and Content	7
6. Content Beyond Syllabus	8
C. COURSE ASSESSMENT.	8
1. Course Coverage	8
2. Continuous Internal Assessment (CIA)	8 0
D1. I EACHING PLAN - 1	8
Module - 1	8
	9
E1. CIA EXAM – 1.	10
d. Model Question Paper - 1	10
	11
DZ. TEACHING PLAN - 2	/ 2
Module – 3	2/ 28
For CIA FYAM $_{-2}$	20
a Model Ouestion Paper - 2	20
h Assignment – 2	20
D3 TEACHING PLAN - 3	/2
Module - 5	/12
F3 CIA FXAM – 3	 ⊿2
a. Model Question Paper - 3	
b. Assignment – 3.	
F. EXAM PREPARATION	57
1. University Model Question Paper	
2. SEE Important Questions	60
G. Content to Course Outcomes	65
1. TLPA Parameters	65
2. Concepts and Outcomes:	65
	-

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

course plan - CAY 2019-20 17CV52 : Analysis of Indeterminate Structures

A. COURSE INFORMATION

1. Course Overview

Degree:	Civil Engineering	Program:	B.E
Year / Semester :	2019/V	Academic Year:	2019-20
Course Title:	Analysis of Indeterminate Structures	Course Code:	17CV52
Credit / L-T-P:	04	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	Dr. K. Naresh	Sign	Dt:
Checked By:	ΜΟΗΑΝ Κ Τ	Sign	Dt:

2. Course Content

Mod	Module Content	Teaching	Module	Bloom
ule		Hours	Concepts	s Level
1	SLOPE DEFLECTION METHOD:Introduction, sign convention, development of slope deflection equation, analysis of continuous beams including settlements,Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3	10	slope	L2, L4, L5
2	MOMENT DISTRIBUTION METHOD:Introduction, Definition of terms, Development of method, Analysis of continuous beams with support yielding, Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3	10	Distribution factor carry over moment	L2, L4, L5
3	KANI'S METHOD: Introduction, Concept, Relationships between bending moment and deformations, Analysis of continuous beams with and without settlements, Analysis of frames with and without sway	10	Rotation factor kani's box	L2, L4, L5
4	MATRIX METHOD OF ANALYSIS (FLEXIBILITY METHOD) Introduction, Axes and coordinates, Flexibility matrix, Analysis of continuous beams and plane trusses using system approach, Analysis of simple orthogonal rigid frames using system approach with static indeterminacy ≤ 3.	10	Displacement formation of flexibility matrix	L2, L4, L5
5	MATRIX METHOD OF ANALYSIS (STIFFNESS METHOD) Introduction, Stiffness matrix, Analysis of continuous beams and plane trusses using system approach. Analysis of simple orthogonal rigid frames using system approach with kinematic indeterminacy ≤ 3.	10	Rotation formation of stiffness matrix	L2, L4, L5

3. Course Material

Mod	Details	Available
ule		
1	Text books	
a)	Indeterminate Structural Analysis -K.U. Muthu, H.Narendra etal,	In Lib
2	Reference books	
a)	Indeterminate Structural Analysis -Wang C K, McGraw Hill	In dept
3	Others (Web, Video, Simulation, Notes etc.)	Not Available

4. Course Prerequisites

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level

1	17CV42	Analysis	of	Conditions of equilibrium, Degree	4	-	L2,L5
		determinate		of freedom, static and kinematic			
		structures		indeterminacy.			
2	17CV32	Strength	of	Shear force and bending moment	3	-	L4,L5
		materials		diagrams			

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach. Hours	Concept	Instr Method	Assessmen t Method	Blooms' Level
17cv52.1	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using slope deflection method.	05	slope	Black board	Internal assessment and Assignment	L2, L4, L5
17cv52.2	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using slope deflection method.	05	slope	Black board	Internal assessment and Assignment	L2, L4, L5
17cv52.3	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using moment distribution method.	05	Distribution factor carry over moment	Black board	Internal assessment and Assignment	L2, L4, L5
17cv52.4	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using moment distribution method.	05	Distribution factor carry over moment	Black board	Internal assessment and Assignment	L2, L4, L5
17cv52.5	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Kani's method.	05	Rotation factor kani's box	Black board	Internal assessment and Assignment	L2, L4, L5
17cv52.6	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Kani's method.	05	Rotation factor kani's box	Black board	Internal assessment and Assignment	L2, L4, L5
17CV52.7	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Flexibility	05	Displaceme nt formation of flexibility matrix	Black board	Internal assessment and Assignment	L2, L4, L5

	method.					
17cv52.8	Student should be able to determine	05	Displaceme	Black	Internal	L2, L4, L5
	the moments in frames subjected to		nt	board	assessment	
	sway or non sway having constant		formation of		and	
	moment of inertia or variable moment		flexibility		Assignment	
	of inertia using Flexibility method.		matrix			
17cv52.9	Student should be able to determine	05	Rotation	Black	Internal	L2, L4, L5
	the moments in indeterminate beams		formation of	board	assessment	
	with or without sinking having		stiffness		and	
	constant moment of inertia or variable		matrix		Assignment	
	moment of inertia using Stiffness					
	method.					
17cv52.10	Student should be able to determine	05	Rotation	Black	Internal	L2, L4, L5
	the moments in frames subjected to		formation of	board	assessment	
	sway or non sway having constant		stiffness		and	
	moment of inertia or variable moment		matrix		Assignment	
	of inertia using Stiffness method.					
-	Total	50	-	-	-	-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel	CO1	L5
	and Marine structures.	CO2	
2	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel	CO3	L5
	and Marine structures.	CO4	
3	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel	CO5	L5
	and Marine structures.	CO6	
4	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel	CO7	L5
	and Marine structures.	CO8	
5	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel	CO9	L5
	and Marine structures.	CO10	
N I I			

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes				F	Progr	am (Outc	ome	s				
#	COs	PO1	PO2	PO3	PO4	PO5	PO	PO7	PO	PO9	PO1	PO1	PO1	Level
							6		8		0	1	2	
17cv52.1	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using slope deflection method.	1	3	_	_	_	_	-	-	-	_	-	-	L5
17cv52.2	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of	1	3	-	-	-	-	-	-	-	-	-	-	L5

	inertia or variable moment of inertia using slope deflection method.													
17cv52.3	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using moment distribution method.	1	3	_	-	-	_	_	_	_	_	_	_	L5
17CV52.4	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using moment distribution method.	1	3	_	_	_	_	_	_	_	_	_	_	L5
17cv52.5	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Kani's method.	1	3	-	-	-	-	-	-	-	-	-	_	L5
17cv52.6	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Kani's method.	1	3	-	-	-	-	-	-	-	-	-	-	L5
17cv52.7	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Flexibility method.	1	3	-	-	-	-	-	-	-	-	-	-	L5
17cv52.8	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Flexibility method.	1	3	_	-	-	-	-	-	_	-	-	-	L5
17cv52.9	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Stiffness method.	1	3	-	_	-	-	-	-	-	-	-	-	L5
17cv52.10	Student should be able to determine the moments in frames subjected to sway or non	1	3	-	-	-	-	-	-	-	-	-	-	L5

										CV 31	NI I I	10DT I	02 12.2
COURS	SE PL	AN -	CAY 2	019-2	20								
sway having constant moment of inertia or variable moment of inertia using Stiffness method.													
CV52PC. Average	1	3	-	-	-	-	-	-	-	-	-	-	-
Note: Mention the mapping strength as 1, 2, 0	Note: Mention the mapping strength as 1, 2, or 3												

4. Mapping Justification

Мар	ping	Justification	Mapping Level		
СО	PO	-	-		
CO1	PO1	Knowledge of Final moments is required for analysis of an structure	L5		
CO1	PO2	Analysis of beam by Slope deflection method is required to calculate the final bending moments of members.			
CO2	PO1	Knowledge of Final moments is required for analysis of an structure	L5		
CO2	PO2	Analysis of frames by Slope deflection method is required to calculate the final bending moments of members.	L5		
CO3	PO1	Knowledge of Final moments is required for analysis of an structure	L5		
CO3	PO2	Analysis of beam and truss by Moment distribution method is required to calculate the final bending moments of members.	L5		
CO4	PO1	Knowledge of Final moments is required for analysis of an structure	L5		
CO4	PO2	Analysis of frames by Moment distribution is required to calculate the final bending moments of members.	L5		
CO5	PO1	Knowledge of Final moments is required for analysis of an structure	L5		
CO5	PO2	Analysis of beam by kani's method is required to calculate the final bending moments of members.	L5		
CO6	PO1	Knowledge of Final moments is required for analysis of an structure	L5		
CO6	PO2	Analysis of frames by kani's method method is required to calculate the final bending moments of members.	L5		
CO7	PO1	Knowledge of Final moments is required for analysis of an structure	L5		
CO7	PO2	Analysis of Beams by Flexibility Matrix method is required to calculate the final bending moments of members.	L5		
CO8	PO1	Knowledge of Final moments is required for analysis of an structure	L5		
CO8	PO2	Analysis of frames by Flexibility Matrix method is required to calculate the final bending moments of members.	L5		
CO9	PO1	Knowledge of Final moments is required for analysis of an structure	L5		
CO9	PO2	Analysis of beam by Stiffness Matrix method is required to calculate the final bending moments of members.	L5		
CO10	PO1	Knowledge of Final moments is required for analysis of an structure	L5		
CO10	PO2	Analysis of frame by Stiffness Matrix method is required to calculate the final bending moments of members.	L5		

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching	No. of question in Exam						CO	Levels
ule		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
#							Asg			
1	Slope deflection method	10	2	-	-	1	1	2	CO1	L5
									CO2	
2	Moment Distribution method	10	2	-	-	1	1	2	CO3	L5
									CO4	
3	Kani's method	10	-	2	-	1	1	2	CO5	L5
									CO6	
4	Flexibility matrix method	10	-	2	-	1	1	2	CO7	L5
									CO8	
5	Stiffness matrix method	10	-	-	4	1	1	2	COg	L5
									CO10	
-	Total	50	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	L5
CIA Exam – 2	30	CO5,CO6,CO7,CO8	L5
CIA Exam – 3	30	CO9,CO10	L5
Assignment - 1	10	CO1, CO2, CO3, CO4	L5
Assignment - 2	10	CO5,CO6,CO7,CO8	L5
Assignment - 3	10	CO9,CO10	L5
Final CIA Marks	40	-	-

Note : Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN - 1

Module - 1

Title:	Slope deflection method	Appr	10 Hrs
		l ime:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level

	COURSE PLAN - CAY 2019-20		
1	determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using slope deflection method.	CO1	L2, L4, L5
2	determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using slope deflection method.	CO2	L2, L4, L5
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Slope Deflection Method: Introduction	C01	L2
2	sign convention,	C01	L2
3	development of slope deflection equation	C01	L4
4	analysis of continuous beams including settlements	C01	L4
5	Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3	C01	L5
6	Problems	C01	L5
7	Problems	C01	L5
8	Problems	C02	L5
9	Problems	C02	L5
10	Problems	C02	L5
		C02	L5
С	Application Areas	со	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO1	L5
d	Review Questions	-	-
1	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD	CO1	L5
2	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD	CO1	L5
е	Experiences	-	_
1			
2			

Module – 2

Title:	Moment distribution method	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using moment distribution method.	CO3	L2, L4, L5
2	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using moment distribution method.	CO4	L2, L4, L5
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level

11 Moment Distribution Method: Introduction		
	CO3	L2
12 Definition of terms, Development of method	CO3	L2
13 Analysis of continuous beams with support yielding	C03	L4
14 Analysis of orthogonal rigid plane frames including sway frames wi kinematic indeterminacy ≤ 3	ith Co3	L4
15 Analysis of orthogonal rigid plane frames including sway frames wi kinematic indeterminacy ≤ 3	ith C04	L5
16 Numericals	C04	L5
17 Numericals	C04	L5
18 Numericals	C04	L5
19 Numericals	C04	L5
20 Numericals	C04	L5
c Application Areas	СО	Level
cApplication Areas1Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures.	CO ed CO3	Level
c Application Areas 1 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures.	co ed CO3 ed CO4	Level L5 L5
c Application Areas 1 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures.	CO ed CO3 ed CO4	Level L5 L5
c Application Areas 1 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 4 Review Questions	ed CO3 ed CO4	Level L5 L5
c Application Areas 1 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 4 Review Questions 1 Analyse the continuous beam by moment distribution method and Dra SFD and BMD	ed CO3 ed CO4 ed CO4	Level L5 L5 - L5
c Application Areas 1 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 4 Review Questions 1 Analyse the continuous beam by moment distribution method and Drag SFD and BMD 2 Analyse the Portal frame by moment distribution method and Draw SF and BMD	CO ed CO3 ed CO4 ed CO4 aw CO3 ED CO4	Level L5 L5
c Application Areas 1 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 4 Review Questions 1 Analyse the continuous beam by moment distribution method and Draw SFD and BMD 2 Analyse the Portal frame by moment distribution method and Draw SF and BMD	CO ed CO3 ed CO4 ed CO4 - aw CO3 ED CO4	Level L5 L5 - L5 L5 L5
c Application Areas 1 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 4 Review Questions 1 Analyse the continuous beam by moment distribution method and Drag SFD and BMD 2 Analyse the Portal frame by moment distribution method and Draw SF and BMD 2 Experiences	CO ed CO3 ed CO4 - - aw CO3 - - aw CO3 - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Level L5 L5
c Application Areas 1 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. 2 Used for the design of Reinforced cement concrete, Pre stresse concrete, steel and Marine structures. d Review Questions 1 Analyse the continuous beam by moment distribution method and Dra SFD and BMD 2 Analyse the Portal frame by moment distribution method and Draw SF and BMD 1 Experiences 1 1	CO ed CO3 ed CO4 - - aw CO3 FD CO4 - - - -	Level L5 L5

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code:	17CV52	Sem:	V	Marks:	30	Time: 7	5 minute	S	
Cour	rse:	Analysis of Indeterminate Structures								
-	-	Note: An	swer any 3	questions,	each carry ec	qual mark	S.	Marks	СО	Level
1		Analyse and BMD	the continue).	ous beam l	by Slope Defle	ection me	thod and Draw SF	D 15	CO1	L5
					5kN/m 5m Fig. Q.1	2m + 60	2m D 77777			
					OR					
2		Analyse ⁻ BMD	the Portal fr	ame by Slo	ope Deflectior	n method	and Draw SFD an	d 15	CO2	L5
				6m	✓ 5kN/m B 2m ↓ 2m ✓ 4m ←	4m F				
17CV5	52			1111	<i></i>		Copyright ©2017. cA	AS. All right	s reserve	ed.

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Model	Assignment	Questions								
Crs C	ode:	17CV52	Sem:	V	Marks:	15	Time:	90 - 120	minute	S				
Cours	se:	Analysis	of Indetermi	nate Structu	ires		·							
Note:	Each	student	to answer 2-3	assignmen	ts. Each assig	gnment carr	ies equal ma	equal mark.						
SNo		USN		Assig	nment Desc	ription		Marks	СО	Level				
1			Analyse the and Draw SF	continuous D and BMD.	beam by S	Slope Deflect ^{IN} 15kh ^{Im} c 2m 4m	ction metho	d 15	CO1	L5				
2			Analyse the Draw SFD an	Portal fran d BMD.	ne by Slope	Deflection	method ar	id 15	CO2	L5				
3			Analyse the and Draw SF	continuous D and BMD	beam by mo	ment distrib	ution methc	d 15	CO3	L5				

	COURSE PLAN - CAY 2019-20			
8	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO3	L5
9	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO4	L5
10	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO1	L5
11	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD. $10kN/m \qquad B_{2m} \qquad 2m \qquad$	15	CO1	L5
12	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD. $ \int_{10kM} \int_{3m}^{5m} (1) \int_{10kM}^{5m} (2) \int_{10kM}^{10kM} \int_{10kM}^{5m} (2) \int_{10kM}^{10kM} \int_{$	15	CO2	L5
13	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO3	L5

	COURSE PLAN - CAY 2019-20			
38	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO3	L5
	A $3i$ $7mm$ $2.5i$ $7mm$ $2i$ $2i$ $7mm$ $2i$ $2i$ $7mm$ $2i$ $2i$ $7mm$ $2i$ $2i$ $2i$ $7mm$ $2i$ $2i$ $2i$ $2i$ $2i$ $2i$ $2i$ $2i$			
39	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO4	L5
	A Gm Gm Gm Gm Gm Gm Gm Gm Gm Gm			
40	Analyze the frame shown in using slope deflection method.	5	CO1	L5
41	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
	$3m$ B_{2m} $2m$ $2m$ c $2m$ D 3m $6m$ $4m$ m			
42	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD. $\int_{1000}^{3m} \int_{1000}^{3m} \int_{1000}^$	15	CO2	L5
43	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO3	L5

D2. TEACHING PLAN - 2`

Module – 3

T 111		Δ	
l Itle:	kani s method	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Kani's method.	CO5	L2, L4 L5
2	determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Kani's method.	CO6	L2, L4 L5
b	Course Schedule		
Class No	Module Content Covered	СО	Level
20	Kani's Method: Introduction	C05	L2
21	Concept, Relationships between bending moment and deformations	C05	L2
22	Analysis of continuous beams with and without settlements	C05	L4
23	Analysis of frames with and without sway	C05	L4
24	Numericals	C05	L5
25	Numericals	C05	L5

26	Numericals	C06	L5
27	Numericals	C06	L5
28	Numericals	C06	L5
29	Numericals	C06	L5
30	Numericals	C06	L5
С	Application Areas	CO	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	C05	L5
2	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	C06	L5
d	Review Questions	-	-
1	Analyse the continuous beam by Kani's method and Draw SFD and BMD	C05	L5
2	Analyse the Portal frame by Kani's method and Draw SFD and BMD	C06	L5
е	Experiences	-	-
1			
2			

Module – 4

Title:	Matrix method of Analysis.(Stiffness matrix)	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Stiffness method.	CO7	L2
2	determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Stiffness method.	CO8	L2
h	Caursa Sabadula		
U Class No	Module Content Covered	00	
21	Matrix Method of Analysis (Stiffness Method): Introduction		
32	Stiffness matrix	C07	L2
33	Analysis of continuous beams and plane trusses using system approach		2
33	Analysis of simple orthogonal rigid frames using system approach with	 CO7	
	kinematicndeterminacy ≤ 3	,	
35	Analysis of simple orthogonal rigid frames using system approach with kinematic Indeterminacy ≤ 3	CO8	L4
36	Problems	CO8	L4
37	Problems	CO8	L5
38	Problems	CO8	L5
39	Problems	CO8	L5
40	Problems	CO8	L5
С	Application Areas	CO	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete steel and Marine structures	COg	L5
2	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO10	L5

d	Review Questions	-	-
1	Analyse the continuous beam by Stiffness matrix method and Draw SFD and BMD	CO9	L5
2	Analyse the Portal frame by Stiffness matrix method and Draw SFD and BMD	CO10	L5
е	Experiences	-	-

E2. CIA EXAM – 2

a. Model Question Paper - 2

Course: Marks: Colspan="2">Level. • • • Note: Answer any 2 questions, each carry equal marks. Marks CO Level. 1 Analyse the continuous beam by Kani's method and Draw SFD and BMD 15 CO5 L5 a) - OR - CO5 L5 2 Analyse the Portal frame by Kani's method and Draw SFD and BMD 15 CO6 L5 3 Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Og. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2 15 CO7 L5 3 Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Og. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2 15 CO7 L5	Crs Code	e: 17CV52 Sem: V Marks: 30 Time: 75		75 minute	S			
 Note: Answer any 2 questions, each carry equal marks. Marks CO Level. Analyse the continuous beam by Kani's method and Draw SFD and BMD Analyse the continuous beam by Kani's method and Draw SFD and BMD Analyse the Portal frame by Kani's method and Draw SFD and BMD Analyse the Portal frame by Kani's method and Draw SFD and BMD Analyse the Portal frame by Kani's method and Draw SFD and BMD Analyse the Portal frame by Kani's method and Draw SFD and BMD CO6 Analyse the Portal frame by Kani's method and Draw SFD and BMD Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2 Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2 Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2 Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2 	Course:	Analysis of Indetermina	te Structures					
1 Analyse the continuous beam by Kani's method and Draw SFD and BMD CO5 L5 1 Analyse the continuous beam by Kani's method and Draw SFD and BMD 15 CO6 L5 2 Analyse the Portal frame by Kani's method and Draw SFD and BMD 15 CO6 L5 2 Analyse the Portal frame by Kani's method and Draw SFD and BMD 15 CO6 L5 3 Using stiffness method. determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 × 105 N/mm2 15 CO7 L5 3 Using stiffness method. determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 × 105 N/mm2 15 CO7 L5 4 Image: State and member. E = 2 × 105 N/mm2 Image: State and member. E = 2 × 105 N/mm2 15 CO7 L5		Note: Answer any 2 que	estions, each car	ry equal ma	irks.	Marks	CO	Level
2 Analyse the Portal frame by Kani's method and Draw SFD and BMD 15 CO6 L5 2 Analyse the Portal frame by Kani's method and Draw SFD and BMD 15 CO6 L5 3 Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2 15 CO7 L5 3 Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2 15 CO7 L5 4 4 4 4 4 4 4 4 4 5 CO7 L5 5 <td< th=""><th>1</th><th>Analyse the continuous</th><th>beam by Kani's r 20kN 20kN 20kN 2.51 5m</th><th>) him (2) him (2) 4r</th><th>Draw SFD and BM</th><th>15</th><th>CO5</th><th>L5</th></td<>	1	Analyse the continuous	beam by Kani's r 20kN 20kN 20kN 2.51 5m) him (2) him (2) 4r	Draw SFD and BM	15	CO5	L5
2 Analyse the Portal frame by Kani's method and Draw SFD and BMD 15 CO6 L5 3 Constrained frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2 15 CO7 L5 4 Corr L5 Corr L5 Corr L5 3 Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2 15 CO7 L5 0 Corr L5 Corr L5 Corr L5 0 Corr Corr Corr L5 Corr L5			OR					
3 Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2	2	Analyse the Portal fram c 3m (B 3m (A 7777	(21) (2)) (2))	2.5m	r SFD and BMD N/m D Bm : 3m F 77	15	CO6	L5
	3	Using stiffness method, pin jointed frame given brackets against each n	determine force in Fig. Q9. The c nember. E = 2 x 10	s in the mer cross sectior 05 N∕mm2	nbers AB and BC c is are indicated in t	fa 15 he	CO7	L5
			OR					

COURSE PLAN - CAY 2019-20						
4	Analyze the frame shown in Fig. using stiffness method. Draw BMD	15	CO8	L5		
	A 20kN/m 30 kN 30 kN 2m C 21 2m 2m 7m C 2m Fig.Q10 D					

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

				Ν	Model Assigni	nent Que	estions	8				
Crs C	ode:	17CV52	Sem:	V	Marks	15		Time:	90 -	- 120	minutes	5
Cours	se:	Analysis	of Indete	rminate S	itructures							
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.												
SNo	l	USN			Assignment	Descript	ion		M	larks	CO	Level
1			Analyze advantaç	the fram ge of symr 34 8 37	e shown in metry. Draw c (21) m (1) 2.5m (21) m (1) A 5n	using I BMD . N 2.5m	Kani's 6kN/m D 0 (1) 3m E 1) 3m F F	method taki	ng	15	CO5	L5
2			Analyse 1 and BMD	the contin		y Kani's r	netho f	d and Draw Sl	FD	15	CO6	L5
3			Analyse Draw SFI	the contir D and BMI	100005 beam k D. 10kN/m VVVVVV ^B 2m Bm	Dy flexibil ^{10kN} ^{10kN} 2m ↓ 2m 6m	ty ma	trix method a	nd	15	CO7	L5
4			Analyze 1	the beam	by flexibility	natrix me	ethod	un 14m - Arr		15	CO7	L5

— 5m —

minn

-▶ F

min

	COURSE PLAN - CAY 2019-20			
12	Analyse the continuous beam by Kani's method and Draw SFD and BMD	15	CO6	L5
13	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD.	15	CO7	L5
14	Analyze the beam by flexibility matrix method	15	CO7	L5
15	Analyze the portal frame shown in using flexibility method. Draw SFD and BMD. A A Control of the second sec	15	CO7	L5
16	Analyze the frame shown in using Kani's method taking advantage of symmetry. Draw BMD .	15	CO5	L5
17	Analyse the continuous beam by Kani's method and Draw SFD and BMD	15	CO6	L5

— 5m -

mhnn

→ F

min

				1
32	Analyse the continuous beam by Kani's method and Draw SFE and BMD) 15	CO6	L5
33	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD.	15	CO7	L5
34	Analyze the beam by flexibility matrix method	15	CO7	L5
35	Analyze the portal frame shown in using flexibility method Draw SFD and BMD.	. 15	CO7	L5
36	Analyze the frame shown in using Kani's method taking advantage of symmetry. Draw BMD . $c_{3m} (1) c_{2.5m} c_{2.5m} c_{2.5m} c_{10} c_{10}$	15	CO5	L5
37	Analyse the continuous beam by Kani's method and Draw SFE and BMD) 15	CO6	L5
38	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD.	15	CO7	L5
17CV52	$2 \qquad \qquad$	AS. All righ	nts reserv	ed.

39	Analyze the beam by flexibility matrix method	15	CO7	L5
40	Analyze the portal frame shown in using flexibility method. Draw SFD and BMD.	15	CO7	L5
41	Analyze the frame shown in using Kani's method taking advantage of symmetry. Draw BMD. $c_{3m} \begin{pmatrix} (2l) \\ (l) \\ (l$	15	CO5	L5
42	Analyse the continuous beam by Kani's method and Draw SFD and BMD	15	CO6	L5
43	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD. 10kN/m 10kN 10kN 10kN 15kN 2m 2m 2	15	CO7	L5
44	Analyze the beam by flexibility matrix method	15	CO7	L5
45	Analyze the portal frame shown in using flexibility method. Draw SFD and BMD. A A A A A A A A A A A A A A A A A A A	15	CO7	L5
17CV52	(I) (I) ← 90 KN pyright ©2017. cAA	S. All righ	ts reserve	ed.

5m

А mhnn F

min

52	Analyse the continuous beam by Kani's method and Draw SFD and BMD	15	CO6	L5
53	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD. 10kN/m 3m 10kN m 2m 2m 2m 4m 4m 15kN 2m 4m	15	CO7	L5
54	Analyze the beam by flexibility matrix method	15	CO7	L5
55	Analyze the portal frame shown in using flexibility method. Draw SFD and BMD. A A Control of the shown of the	15	CO7	L5
56	Analyze the frame shown in using Kani's method taking advantage of symmetry. Draw BMD.	15	CO5	L5
57	Analyse the continuous beam by Kani's method and Draw SFD and BMD	15	CO6	L5
58	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD.	15	CO7	L5

59	Analyze the beam by flexibility matrix method	15	CO7	L5
60	Analyze the portal frame shown in using flexibility method Draw SFD and BMD.	. 15	CO7	L5
61	Analyze the frame shown in using Kani's method taking advantage of symmetry. Draw BMD.	15	CO5	L5
62	Analyse the continuous beam by Kani's method and Draw SFE and BMD) 15	CO6	L5
63	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD.	15	CO7	L5
64	Analyze the beam by flexibility matrix method	15	CO7	L5
65	Analyze the portal frame shown in using flexibility method Draw SFD and BMD. A A A A A A A A A A A A A A A A A A A	. 15	CO7	L5
17CV52	2 pyright ©2017. cA	AS. All righ	nts reserve	ed.

72	Analyse the continuous beam by Kani's method and Draw SFD and BMD	15	CO6	L5
73	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD.	15	CO7	L5
74	Analyze the beam by flexibility matrix method	15	CO7	L5
75	Analyze the portal frame shown in using flexibility method. Draw SFD and BMD.	15	CO7	L5
76	Analyze the frame shown in using Kani's method taking advantage of symmetry. Draw BMD.	15	CO5	L5
77	Analyse the continuous beam by Kani's method and Draw SFD and BMD	15	CO6	L5
78	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD.	15	CO7	L5

COURSE PLAN - CAY 2019-20							
79	Analyze the beam by flexibility matrix method	15	CO7	L5			
80	Analyze the portal frame shown in using flexibility method. Draw SFD and BMD.	15	CO7	L5			

D3. TEACHING PLAN - 3

Module – 5

Title:	Matrix method of Analysis.(Flexibility matrix)	Appr	12 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Flexibility method.	CO9	L5
2	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Flexibility method.	CO10	L5
b	Course Schedule		
Class No	Module Content Covered	CO	Level
41	Matrix Method of Analysis (Flexibility Method) : Introduction	COg	L5
42	Axes and coordinates	CO9	L5
43	Flexibility matrix	CO9	L5
44	Analysis of continuous beams and plane trusses using system approach	CO10	L5
45	Analysis of simple orthogonal rigid frames using system approach with static indeterminacy ≤ 3	CO10	L5
46	Analysis of simple orthogonal rigid frames using system approach with static indeterminacy ≤ 3	CO9	L5
47	Numericals	COg	L5
48	Numericals	CO10	L5
49	Numericals	CO10	L5
50	Numericals	CO10	L5
С	Application Areas	CO	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO7	L5
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO8	L5
d	Review Questions	-	-
1	Analyse the continuous beam by flexibility matrix methodand Draw SFD and BMD	C07	L5
2	Analyse the truss by flexibility matrix method and Draw SFD and BMD	CO8	L5

е	Experiences	-	-
1			
2			
Title:	Matrix method of Analysis.(Flexibility matrix)	Appr Time:	12 Hrs

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code		17CV52	Sem:	V	Marks:	30	Time	e: 75	minute	S	
Course:		Analysis of	Indetermina	ate Structure	es						
-	-	Note: Answ	ver any 2 qu	estions, eac	ch carry e	qual ma	rks.		Marks	СО	Level
1		Analyse the and BMD.	e continuou	s beam by	flexibility i	matrix m 50kN 2m	60kN	Draw SFD	15	CO9	L5
					OR						
2		Analyse the	e truss by fle	sm ↓10kN 201 5m (E) 710000 Fig.Q8	sm c B C C C C C C C C C C C C C C C C C C	l and Dra	aw SFD and	BMD.	15	CO10	L5
3		Analyze the	e jointed fra its bending	me as show moment dia	vn in fig by gram.	v stiffnes	s matrix me	ethod and	15	CO9	L5
					OR						
4		Analyze th method. Dr	ne portal fr aw SFD and	ame shown I BMD.	am in usir	ng mon	nent stiffne	ss matrix	15	CO10	L5

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions									
Crs C	ode:	17CV52	Sem:	V	Marks:	15	Time: 7	75 minutes		
Cours	se:	Analysis (of Indetermin	ate Structur	es					
Note:	Each	student t	o answer 2-3	assignment	s. Each assig	gnment car	ries equal mar	k.		
SNo	l	JSN		Assigr	nment Desc	ription		Marks	СО	Level
1			Using stiffness method, determine forces in the memb			3 5	CO10	L2		
4701/50										

nnhnn D

13	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO10	L2
14	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
15	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	5	CO9	L2
16	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2	5	CO10	L2
17	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO9	L4
18	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO10	L2

·	COURSE PLAN - CAY 2019-20			
	AN ECHAMA 3M BOKN 5 m EI MA EI AM E 1000			
19	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
20	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	5	CO9	L2
21	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2	5	CO10	L2
22	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO9	L4
23	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO10	L2
24	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
1701/54	4 m A1.5m 1.5m + @2017 044			

	COURSE PLAIN - CAT 2019-20			
31	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2	5	CO10	L2
32	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO9	L4
33	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO10	L2
34	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
35	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	5	CO9	L2
36	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E	5	CO10	L2

8 kN

42	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO9	L4
43	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO10	L2
44	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
45	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	5	CO9	L2
46	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Qg. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2	5	CO10	L2
47	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO9	L4
17CV52	2 Fig.Q10 pyright ©2017. cAA	.S. All righ	nts reserve	ed.

D

48	Analyze the jointed frame as shown in fig by stiffness matr method and determine its bending moment diagram.	× 5	CO10	L2
49	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
50	Analyze the portal frame shown in using Stiffness matr method. Draw SFD and BMD.	× 5	COg	L2
51	Using stiffness method, determine forces in the members A and BC of a pin jointed frame given in Fig. Qg. The cross sections are indicated in the brackets against each member. = 2 x 105 N/mm2 $\int_{3m}^{3m} \int_{4m}^{200mm^2} \int_{4m}^{200mm^2}$	B 5 s E	CO10	L2
52	Analyze the frame shown in Fig. using stiffness method. Dra BMD	v 5	CO9	L4
53	Analyze the jointed frame as shown in fig by stiffness matr method and determine its bending moment diagram.	× 5	CO10	L2
17CV52	2pyright ©2017. c/ Page # 52 / 67	AS. All rigi	nts reserve	ed.

			0010	
54	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
55	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	5	CO9	L2
56	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2×105 N/mm2	5	CO10	L2
57	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO9	L4
58	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO10	L2
59	Analyze the continous beam by stiffness matrix method.	5	CO10	L2

60	Analyze the portal frame shown in using Stiffness matri method. Draw SFD and BMD.	< 5	CO9	L2
	A J 2m B C 30KN/m C SED 3m D 3m D JOOKN 3m D JOOKN 3m D JOOKN A J 2m B C 30KN/m C 3m D JOOKN A J 2m B C 30KN/m C			
61	Using stiffness method, determine forces in the members Al and BC of a pin jointed frame given in Fig. Qg. The cros sections are indicated in the brackets against each member. I = 2 x 105 N/mm2	3 5	CO10	L2
62	Analyze the frame shown in Fig. using stiffness method. Drav BMD	/ 5	CO9	L4
63	Analyze the jointed frame as shown in fig by stiffness matri method and determine its bending moment diagram.	< 5	CO10	L2
64	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
65	Analyze the portal frame shown in using Stiffness matri method. Draw SFD and BMD.	< 5	CO9	L2
17CV52	2 Copyright ©2017. cA	AS. All righ	nts reserve	ed.

	COOKSET EAR CAT 2019 20			
66	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2	5	CO10	L2
67	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO9	L4
68	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO10	L2
69	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
70	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	5	CO9	L2
71	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Qg. The cross sections are indicated in the brackets against each member. E = 2 x 105 N/mm2	5	CO10	L2

77	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO9	L4
78	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.			
79	Analyze the continous beam by stiffness matrix method.			
80	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.			

F. EXAM PREPARATION

1. University Model Question Paper

Course: Analysis of Indeterminate structures Month /				May /	2018
Crs	Crs Code: 17cv52 Sem: V Marks: 100 Time:				inutes
-	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Level
1	a	A horizontal beam ABCD is loaded as shown in Fig. Q1. Plot SFD and BMD.	20	CO1	L5
		Use slope deflection method. Support B settles by 10mm. E = 2×10^5			
		N/mm ² l = 2.4 x 10 ⁶ mm ^{4.}			
		10kN SkN/m 60kN			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		Fig. Q.1			
		OR			
2	a	Analyze the frame shown in Fig. Q2 using slope deflection method. Draw	20	C02	L5
		BMD.			

		1
		1
		1
		1
		1
		1

2. SEE Important Questions

Course:		Analysis of Indeterminate Structur	es	Month	/ Year	May /2	2018
Crs Code:		17cv52 Sem: 3	Marks:	100 Time:	1	180 mi	nutes
	Not e	Answer all FIVE full questions. All (questions carry equa	al marks.	-	-	
Modu le	Qno.	Important Question			Marks	со	Year
1	1	Analyze the frame shown in Fig. (BMD.	22 using slope defle	ection method. Draw	20	C01	2012
	2	Analyze the frame shown in Fig. (BMD.	22 using slope defle	ection method. Draw	20	CO2	2013
	3	Analyze the frame shown in Fig. C BMD.	22 using slope defle	ection method. Draw	20	C02	2014
	4	Analyze the frame shown in Fig. (22 using slope defle BMD.	ection method. Draw	20	C02	2015

		COURSE PLAN - CAY 2019-20		1	
	4	Analyze the portal frame shown in using moment distribution method. Draw SFD and BMD.	20	C02	2014
	5	Analyze the continuous beam shown in Fig.Q4 using moment distribution method. Draw SFD and BMD. $ \frac{60kN}{4m} + \frac{3m}{4m} + \frac{3m}{4m} + \frac{3m}{4m} + \frac{2m}{2m} + \frac{2m}{2m} + \frac{2m}{4m} + $	20	c03	2018
3	1	Analyze the continuous beam shown in Fig.Q4 using kani's method. Draw SFD and BMD.	20	C05	2012
	2	Analyze the portal frame shown in using moment Kani's method. Draw SFD and BMD.	20	c06	2013
	3	Analyze the continuous beam shown in using kani's method. Draw SFD and BMD.	20	c05	2015
	4	Analyze the portal frame shown in using Kani's method. Draw SFD and BMD.	20	CO6	2018

	5	Analyze the continous beam by flexibility matrix method.	20	C07	2013
5	1	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	20	c08	2018
	2	Analyze the continous beam by stiffness matrix method.	20	C07	2017
	3	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	20	C010	2015
	4	Analyze the continous beam by stiffness matrix method.	20	c09	2016
	5	Analyze the portal frame shown in using moment stiffness matrix method. Draw SFD and BMD.	20	C010	2015

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Мо	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
dul	(Split module content into 2 parts which have	Teachin	Learning	Bloo	Action	on	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#			for	Level	Learning	for	Learning
			Content			Learning	
A	В	С	D	E	F	G	H
1	SLOPE DEFLECTION METHOD: Introduction,	5	- L2	L5	-	-	- Slip Test
	sign convention, development of slope		- L4		-	Lecture	-
	denection equation, analysis of continuous		- L5			-	-
1	Analysis of orthogonal rigid plano frames		1.2			-	
1	including sway frames with kinematic	5	- L2 - I 1	L9	_	- Locturo	- Assianment
	indeterminacy < 3		- 5			- Tutorial	-
						-	_
2	MOMENT DISTRIBUTION METHOD:	5	- L2	L5	-	-	-
	Introduction, Definition of terms,		- L4		-	Lecture	Assignment
	Development of method, Analysis of		- L5			-	-
	continuous beams with support yielding,						
2	Analysis of orthogonal rigid plane frames	5	- L2	L5	-	-	- Slip Test
	including sway frames with kinematic		- L4		-	Lecture	-
	indeterminacy ≤ 3		- L5			-	
3	KANI'S METHOD: Introduction, Concept,	5	- L2	L5	-	-	- Slip Test
	deformations. Analysis of continuous beams		- L4		-	Lecture	-
	with and without settlements		- L5			-	
2	Analysis of frames with and without sway	5	-12	15	_	_	_
		5	- L4		-	Lecture	Assianment
			- L5			- Tutorial	-
			_			-	-
4	MATRIX METHOD OF ANALYSIS (FLEXIBILITY	5	- L2	L5	-	-	-
	METHOD) :Introduction, Axes and coordinates,		- L4		-	Lecture	Assignment
	Flexibility matrix, Analysis of continuous		- L5			- Tutorial	-
	beams and plane trusses using system					-	-
	approach,. Analysis of simple orthogonal rigid frames						
4	Analysis of simple ofthogonal rigid frames	5		L5	-	- Locturo	- Assignment
	indeterminacy < 2		- L4 - I 5		-	- Tutorial	-
	indetermindey = 3		L0			-	_
5	MATRIX METHOD OF ANALYSIS (STIFFNESS	5	- L2	L5	-	_	-
	METHOD) Introduction, Stiffness matrix,		- L4		-	Lecture	Assignment
	Analysis of continuous beams and plane		- L5			-	-
	trusses using system approach					-	-
5	Analysis of simple orthogonal rigid frames	5	- L2	L5	-	-	-
	using system approach with kinematic		- L4		-	Lecture	Assignment
	Indeterminacy ≤ 3		- L5			-	-
1						-	-

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Mo Learning or Identified Final Concept Concept

CO Components Course Outcome

			C	OURSE PLAN - CAY 2019-2	0	
dul	Outcome	Concepts		Justification	(1.Action Verb,	
e-	from study of	from		(What all Learning	2.Knowledge,	
#	the Content	Content		Happened from the	3.Condition /	Student Should be
	or Syllabus			study of Content /	Methodology,	able to
				Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
Α	1	J	K	L	М	N
1	-	slope	slope			determine the
	-					moments in
						indeterminate
						beams with or
						without sinking
						having constant
						moment of inertia or
						variable moment of
						inertia using slope
						deflection method.
1	-	slope				determine the
	-					moments in frames
						subjected to sway or
						non sway having
						constant moment of
						inertia or variable
						moment of inertia
						deflection method
						denection method.
2	_	Distributio	Distribution			determine the
	-	n factor	factor			moments in
		carry over				indeterminate
		moment				beams with or
						without sinking
						having constant
						moment of inertia or
						variable moment of
						inertia using
						moment distribution
						method.
2	-	Distributio				determine the
	-	n factor				moments in frames
		carry over				subjected to sway or
		rnoment				non sway having
						inortia or variable
						moment of inertia
						using moment
						distribution mothod
2	-	Rotation	Rotation			determine the
	-	factor	factor			moments in
		kani's box				indeterminate
						beams with or
						without sinking
						having constant
						moment of inertia or
						variable moment of
						inertia using Kani's
						method.

3	-	Rotation factor kani's box			determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Kani's method.
4	-	Displace ment formation of flexibility matrix	Displacement formation of flexibility matrix		determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Flexibility method.
4	-	Displace ment formation of flexibility matrix			determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Flexibility method.
5	-	Rotation formation of stiffness matrix	Rotation formation of stiffness matrix		determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Stiffness method.
5		Rotation formation of stiffness matrix			determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Stiffness method.