SRI KRISHNA INSTITUTE OF TECHNOLOGY

COURSE PLAN

Academic Year 2019-2020

Program:	B E - Civil Engineering
Semester:	5
Course Code:	17 CV52 $^{\prime}$
Course Title:	Analysis of Indeterminate Structures
Credit / L-T-P:	$4 / 4-0-0$
Total Contact Hours:	50
Course Plan Author:	DR. K NARESH

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology
\#29 Hesaraghatta main road, Chimney hills, Chikkabanavara
Bangalore 560090. Ph 080-23721477
www.skit.org Email: skitprinci1@gmail.com

Table of Contents

17CV52 : Analysis of Indeterminate Structures 3
A. COURSE INFORMATION 3

1. Course Overview 3
2. Course Content 3
3. Course Material. 3
4. Course Prerequisites 3
B. OBE PARAMETERS 4
5. Course Outcomes 4
6. Course Applications 5
7. Articulation Matrix 5
8. Mapping Justification 7
9. Curricular Gap and Content 7
10. Content Beyond Syllabus 8
C. COURSE ASSESSMENT 8
11. Course Coverage 8
12. Continuous Internal Assessment (CIA) 8
D1. TEACHING PLAN - 1 8
Module - 1 8
Module-2 9
E1. CIA EXAM - 1 10
a. Model Question Paper - 1 10
b. Assignment -1 11
D2. TEACHING PLAN - 2 27
Module - 3 27
Module-4 28
E2. CIA EXAM - 2 29
a. Model Question Paper - 2 29
b. Assignment - 2 30
D3. TEACHING PLAN - 3 42
Module - 5 42
E3. CIA EXAM - 3 43
a. Model Question Paper - 3 43
b. Assignment - 3 43
F. EXAM PREPARATION 57
13. University Model Question Paper 57
14. SEE Important Questions 60
G. Content to Course Outcomes 65
15. TLPA Parameters 65
16. Concepts and Outcomes 65
Note : Remove "Table of Content" before including in CP Book
Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

17CV52 : Analysis of Indeterminate Structures

A. COURSE INFORMATION

1. Course Overview

Degree:	Civil Engineering	Program:	B.E
Year / Semester:	$2019 / \mathrm{V}$	Academic Year:	$2019-20$
Course Title:	Analysis of Indeterminate Structures	Course Code:	17 CV52
Credit / L-T-P:	04	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	$1 /$ Module
Course Plan Author:	Dr. K. Naresh	Sign	Dt:
Checked By:	MOHAN KT	Sign	Dt:

2. Course Content

$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { ule } \end{array}$	Module Content	Teaching Hours	Module Concepts	Bloom s Level
1	SLOPE DEFLECTION METHOD:Introduction, sign convention, development of slope deflection equation, analysis of continuous beams including settlements,Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3	10	slope	$\begin{gathered} \text { L2, L4 } \\ \mathrm{L} 5 \end{gathered}$
2	MOMENT DISTRIBUTION METHOD:Introduction, Definition of terms, Development of method, Analysis of continuous beams with support yielding, Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3	10	Distribution factor carry over moment	$\begin{gathered} \text { L2, L4 } \\ \mathrm{L} 5 \end{gathered}$
3	KANI'S METHOD: Introduction, Concept, Relationships between bending moment and deformations, Analysis of continuous beams with and without settlements, Analysis of frames with and without sway	10	Rotation factor kani's box	$\begin{gathered} \text { L2, L4 } \\ \text { L5 } \end{gathered}$
4	MATRIX METHOD OF ANALYSIS (FLEXIBILITY METHOD) :Introduction, Axes and coordinates, Flexibility matrix, Analysis of continuous beams and plane trusses using system approach,Analysis of simple orthogonal rigid frames using system approach with static indeterminacy ≤ 3.	10	Displacement formation of flexibility matrix	$\begin{gathered} \text { L2, L4 } \\ L 5 \end{gathered}$
5	MATRIX METHOD OF ANALYSIS (STIFFNESS METHOD) Introduction, Stiffness matrix, Analysis of continuous beams and plane trusses using system approach. Analysis of simple orthogonal rigid frames using system approach with kinematic indeterminacy ≤ 3.	10	$\begin{gathered} \text { Rotation } \\ \text { formation of } \\ \text { stiffness matrix } \end{gathered}$	$\begin{gathered} \text { L2, L4 } \\ L 5 \end{gathered}$

3. Course Material

Mod ule	Details	Available
1	Text books	
a)	Indeterminate Structural Analysis -K.U. Muthu, H.Narendra etal,	In Lib
2	Reference books	In dept
a)	Indeterminate Structural Analysis -Wang C K, McGraw Hill	Not Available
3	Others (Web, Video, Simulation, Notes etc.)	

4. Course Prerequisites

SNo	Course Code	Course Name	Module / Topic / Description	Sem	Remarks	Blooms Level

COURSE PLAN - CAY 2019-20

1	17 CV 42	Analysis determinate structures	of	Conditions of equilibrium, Degree of freedom, static and kinematic indeterminacy.	4	-
2	17 CV 32	Strength materials	offSear force and bending moment diagrams	3	L2,L5	

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5 .

B. OBE PARAMETERS

1. Course Outcomes

\#	COs	Teach. Hours	Concept	Instr Method	$\begin{array}{c\|} \hline \text { Assessmen } \\ \text { t Method } \\ \hline \end{array}$	Blooms' Level
17CV52.1	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using slope deflection method.	05	slope	Black board	Internal assessment and Assignment	L2, L4, L5
17Cv52.2	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using slope deflection method.	05	slope	Black board	Internal assessment and Assignment	L2, L4, L5
17Cv52.3	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using moment distribution method.	05	Distribution factor carry over moment	Black board	Internal assessment and Assignment	L2, L4, L5
17Cv52.4	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using moment distribution method.	05	Distribution factor carry over moment	Black board	Internal assessment and Assignment	L2, L4, L5
17CV52.5	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Kani's method.	05	Rotation factor kani's box	Black board	Internal assessment and Assignment	L2, L4, L5
17Cv52.6	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Kani's method.	05	Rotation factor kani's box	Black board	Internal assessment and Assignment	L2, L4, L5
17Cv52.7	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Flexibility	05	Displaceme nt formation of flexibility matrix	Black board	Internal assessment and Assignment	L2, L4, L5

COURSE PLAN - CAY 2019-20

method.						
17Cv52.8	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Flexibility method.	05	Displaceme nt formation of flexibility matrix	Black board	Internal assessment and Assignment	L2, L4, L5
17Cv52.9	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Stiffness method.	05	Rotation formation of stiffness matrix	Black board	Internal assessment and Assignment	L2, L4, L5
17Cv52.10	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Stiffness method.	05	Rotation formation of stiffness matrix	Black board	Internal assessment and Assignment	L2, L4, L5
-	Total	50	-	-	-	-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$	L5
2	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	$\begin{aligned} & \mathrm{CO}_{3} \\ & \mathrm{CO}_{4} \end{aligned}$	L5
3	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	$\begin{aligned} & \mathrm{CO} 5 \\ & \mathrm{CO} \end{aligned}$	L5
4	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$	L5
5	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	$\begin{gathered} \mathrm{CO} 9 \\ \mathrm{CO} 10 \end{gathered}$	L5

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes	Program Outcomes												
\#	COs						$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	PO7	$\begin{gathered} \mathrm{PO} \\ 8 \end{gathered}$	POg	$\begin{array}{\|c} \mathrm{PO} 1 \\ 0 \end{array}$	$\begin{gathered} \mathrm{PO} 1 \\ 1 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{PO}_{1} \\ 2 \end{array}$	Level
17Cv52.1	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using slope deflection method.	1	3	-	-	-	-	-	-	-	-	-	-	L5
17CV52.2	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of	1	3	-	-	-	-	-	-	-	-	-	-	L5

COURSE PLAN - CAY 2019-20

	inertia or variable moment of inertia using slope deflection method.													
17CV52.3	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using moment distribution method.	1	3	-	-	-	-	-	-	-	-	-	-	L5
17Cv52.4	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using moment distribution method.	1	3	-	-	-	-	-	-	-	-	-	-	L5
17CV52.5	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Kani's method.	1	3	-	-	-	-	-	-	-	-	-	-	L5
17CV52.6	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Kani's method.	1	3	-	-	-	-	-	-	-	-	-	-	L5
17CV52.7	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Flexibility method.	1	3	-	-	-	-	-	-	-	-	-	-	L5
17Cv52.8	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Flexibility method.	1	3	-	-	-	-	-	-	-	-	-	-	L5
17Cv52.9	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Stiffness method.	1	3	-	-	-	-	-	-	-	-	-	-	L5
17CV52.10	Student should be able to determine the moments in frames subjected to sway or non	1	3	-	-	-	-	-	-	-	-	-	-	L5

COURSE PLAN - CAY 2019-20

	Sway having constant moment of inertia or variable moment of inertia using Stiffness method.												

4. Mapping Justification

Mapping		Justification	Mapping
CO	PO	-	
CO1	PO1	Knowledge of Final moments is required for analysis of an structure	L5
CO1	PO2	Analysis of beam by Slope deflection method is required to calculate the final bending moments of members.	L5
CO 2	PO1	Knowledge of Final moments is required for analysis of an structure	L5
CO 2	PO2	Analysis of frames by Slope deflection method is required to calculate the final bending moments of members.	L5
CO_{3}	PO1	Knowledge of Final moments is required for analysis of an structure	L5
CO_{3}	PO2	Analysis of beam and truss by Moment distribution method is required to calculate the final bending moments of members	L5
CO_{4}	PO1	Knowledge of Final moments is required for analysis of an structure	L5
CO 4	PO2	Analysis of frames by Moment distribution is required to calculate the final bending moments of members.	L5
CO 5	PO1	Knowledge of Final moments is required for analysis of an structure	L5
CO 5	PO2	Analysis of beam by kani's method is required to calculate the final bending moments of members.	L5
CO6	PO1	Knowledge of Final moments is required for analysis of an structure	L5
CO6	PO2	Analysis of frames by kani's method method is required to calculate the final bending moments of members.	L5
CO7	PO1	Knowledge of Final moments is required for analysis of an structure	L5
CO7	PO2	Analysis of Beams by Flexibility Matrix method is required to calculate the final bending moments of members.	L5
CO8	PO1	Knowledge of Final moments is required for analysis of an structure	L5
C08	PO2	Analysis of frames by Flexibility Matrix method is required to calculate the final bending moments of members.	L5
CO 9	PO1	Knowledge of Final moments is required for analysis of an structure	L5
CO 9	PO2	Analysis of beam by Stiffness Matrix method is required to calculate the final bending moments of members.	L5
CO10	PO1	Knowledge of Final moments is required for analysis of an structure	L5
CO10	PO2	Analysis of frame by Stiffness Matrix method is required to calculate the final bending moments of members.	L5

Note: Write justification for each CO-PO mapping.
5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A. 4 and add others also.
6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Note: Anything not covered above is included here.
C. COURSE ASSESSMENT

1. Course Coverage

$\begin{gathered} \hline \text { Mod } \\ \text { ule } \\ \# \\ \hline \end{gathered}$	Title	Teaching Hours	No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
1	Slope deflection method	10	2	-	-	1	1	2	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$	L5
2	Moment Distribution method	10	2	-	-	1	1	2	$\begin{aligned} & \mathrm{CO}_{3} \\ & \mathrm{CO}_{4} \end{aligned}$	L5
3	Kani's method	10	-	2	-	1	1	2	$\begin{aligned} & \mathrm{CO} 5 \\ & \mathrm{CO} \end{aligned}$	L5
4	Flexibility matrix method	10	-	2	-	1	1	2	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$	L5
5	Stiffness matrix method	10	-	-	4	1	1	2	$\begin{gathered} \mathrm{CO} \\ \mathrm{CO} 10 \end{gathered}$	L5
-	Total	50	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.
2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam -1	30	$\mathrm{CO} 1, \mathrm{CO} 2, \mathrm{CO} 3, \mathrm{CO} 4$	L
CIA Exam -2	30	$\mathrm{CO} 5, \mathrm{CO}, \mathrm{CO}, \mathrm{CO} 8$	L
CIA Exam -3	30	$\mathrm{CO}, \mathrm{CO} 10$	L
			L
Assignment -1	10	$\mathrm{CO} 1, \mathrm{CO} 2, \mathrm{CO} 3, \mathrm{CO} 4$	L
Assignment -2	10	$\mathrm{CO} 5, \mathrm{CO6}, \mathrm{CO} 7, \mathrm{CO} 8$	L
Assignment -3	10	$\mathrm{CO} 9, \mathrm{CO} 10$	
	$\mathbf{4 0}$	$\mathbf{-}$	-
Final CIA Marks			

Note : Blooms Level in last column shall match with A. 2 above.

D1. TEACHING PLAN - 1

Module - 1

Title:	Slope deflection method	Appr Time:	10 Hrs
\mathbf{a}	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level

COURSE PLAN - CAY 2019-20

1	determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using slope deflection method.	CO1	L2, L4, L5
2	determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using slope deflection method.	CO2	L2, L4, L5
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Slope Deflection Method: Introduction	C01	L2
2	sign convention,	C01	L2
3	development of slope deflection equation	C01	L4
4	analysis of continuous beams including settlements	C01	L4
5	Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3	C01	L5
6	Problems	C01	L5
7	Problems	C01	L5
8	Problems	CO 2	L5
9	Problems	CO 2	L5
10	Problems	CO 2	L5
		C 22	L5
c	Application Areas	CO	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO1	L5
d	Review Questions	-	-
1	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD	CO1	L5
2	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD	CO1	L5
e	Experiences	-	-
1			
2			

Module - 2

Title:	Moment distribution method	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using moment distribution method.	CO3	L2, L4, L5
2	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using moment distribution method.	CO 4	L2, L4, L5
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level

COURSE PLAN - CAY 2019-20

11	Moment Distribution Method: Introduction	CO_{3}	L2
12	Definition of terms, Development of method	CO_{3}	L2
13	Analysis of continuous beams with support yielding	C03	L4
14	Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3	CO 3	L4
15	Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3	C 04	L5
16	Numericals	C04	L5
17	Numericals	C04	L5
18	Numericals	C04	L5
19	Numericals	C04	L5
20	Numericals	C 04	L5
c	Application Areas	CO	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO_{3}	L5
2	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO 4	L5
d	Review Questions	-	-
1	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	CO_{3}	L5
2	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	CO_{4}	L5
e	Experiences	-	-
1			
2			

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs Code:17cv52	Sem:	V	Marks:	30	Time:

Course: Analysis of Indeterminate Structures

-	-	Note: Answer any 3 questions, each carry equal marks.	Marks	CO	Level
1		Analyse the continuous beam by Slope Deflection method and Draw SFD and $B M D$.	15	CO1	L5
		OR			
2		Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD	15	CO 2	L5

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	$17 C V 52$	Sem:	V	Marks:	15	Time:	$90-120$ minutes
Course:	Analysis of Indeterminate Structures						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
2		Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5
3		Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO 3	L5

4	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
5	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO 1	L5
6	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
7	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5

8	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO 3	L5
9	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
10	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO1	L5
11	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
12	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5
13	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO 3	L5

14	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
15	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO1	L5
16	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
17	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5

18	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO_{3}	L5
19	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
20	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO1	L5
21	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
22	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5
23	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO 3	L5

24	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
25	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO 1	L5
26	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
27	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5

28	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO_{3}	L5
29	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
39	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO1	L5
31	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
32	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5
33	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO 3	L5

34	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
35	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO1	L5
36	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
37	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5

44	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
45	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO 1	L5
46	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
47	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5

48	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO_{3}	L5
49	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
50	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO1	L5
51	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
52	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5
53	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO 3	L5

58	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO_{3}	L5
59	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
60	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO1	L5
61	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
62	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5
63	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO 3	L5

68	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO_{3}	L5
69	Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
70	Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO1	L5
71	Analyse the continuous beam by Slope Deflection method and Draw SFD and BMD.	15	CO1	L5
72	Analyse the Portal frame by Slope Deflection method and Draw SFD and BMD.	15	CO 2	L5
73	Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO 3	L5

COURSE PLAN - CAY 2019-20

78		Analyse the continuous beam by moment distribution method and Draw SFD and BMD	15	CO 3	L5
79		Analyse the Portal frame by moment distribution method and Draw SFD and BMD	15	CO 4	L5
80		Analyze the frame shown in using slope deflection method. Draw BMD.	5	CO1	L5

D2. TEACHING PLAN - 2`

Module - 3

Title:	Kani's method	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Kani's method.	CO 5	L2, L4 L5
2	determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Kani's method.	CO6	L2, L4 L5
b	Course Schedule		
Class No	Module Content Covered	CO	Level
20	Kani's Method: Introduction	C05	L2
21	Concept, Relationships between bending moment and deformations	C05	L2
22	Analysis of continuous beams with and without settlements	C05	L4
23	Analysis of frames with and without sway	C05	L4
24	Numericals	C05	L5
25	Numericals	C05	L5

COURSE PLAN - CAY 2019-20

26	Numericals	C06	L5
27	Numericals	C06	L5
28	Numericals	C06	L5
29	Numericals	C06	L5
30	Numericals	C06	L5
c	Application Areas	CO	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	C05	L5
2	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	Co6	L5
d	Review Questions	-	-
1	Analyse the continuous beam by Kani's method and Draw SFD and BMD	C05	L5
2	Analyse the Portal frame by Kani's method and Draw SFD and BMD	C06	L5
e	Experiences	-	-
1			
2			

Module - 4

Title:	Matrix method of Analysis.(Stiffness matrix)	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Stiffness method.	CO7	L2
2	determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Stiffness method.	CO8	L2
b	Course Schedule		
Class No	Module Content Covered	CO	Level
31	Matrix Method of Analysis (Stiffness Method): Introduction	CO7	L2
32	Stiffness matrix	CO7	L2
33	Analysis of continuous beams and plane trusses using system approach	CO7	L2
34	Analysis of simple orthogonal rigid frames using system approach with kinematicndeterminacy ≤ 3	CO7	L4
35	Analysis of simple orthogonal rigid frames using system approach with kinematic Indeterminacy ≤ 3	CO8	L4
36	Problems	CO8	L4
37	Problems	CO8	L5
38	Problems	C08	L5
39	Problems	CO8	L5
40	Problems	C08	L5
c	Application Areas	CO	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO9	L5
2	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO10	L5

and	CO10	L5
	-	-

E2. CIA EXAM - 2
a. Model Question Paper - 2
Crs Code: 17 CV52 Sem: V V ${ }^{2}$ Marks: 30 Time: 75 minutes

Course: Analysis of Indeterminate Structures

-	-	Note: Answer any 2 questions, each carry equal marks.	Marks	CO	Level
1		Analyse the continuous beam by Kani's method and Draw SFD and BMD	15	CO 5	L5
		OR			
2		Analyse the Portal frame by Kani's method and Draw SFD and BMD	15	CO6	L5
3		Using stiffness method, determine forces in the members $A B$ and $B C$ of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$	15	$\mathrm{CO7}$	L5
		OR			

COURSE PLAN - CAY 2019-20

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	$17 C V 52$	Sem:	V	Marks:	15	Time:	$90-120$ minutes
Course:	Analysis of Indeterminate Structures						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Analyze the frame shown in using Kani's method taking advantage of symmetry. Draw BMD .	15	CO 5	L5
2		Analyse the continuous beam by Kani's method and Draw SFD and BMD	15	CO6	L5
3		Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD.	15	CO7	L5
4		Analyze the beam by flexibility matrix method	15	CO7	L5

COURSE PLAN - CAY 2019-20

COURSE PLAN - CAY 2019-20

18	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD.	15	CO 7	L5
19	Analyze the beam by flexibility matrix method	15	CO 7	L5
20	Analyze the portal frame shown in using flexibility method. Draw SFD and BMD.	15	CO 7	L5
21	Analyze the frame shown in using Kani's method taking advantage of symmetry. Draw BMD .	15	CO 5	L5
22	Analyse the continuous beam by Kani's method and Draw SFD and BMD	15	CO6	L5
23	Analyse the continuous beam by flexibility matrix method and Draw SFD and BMD.	15	CO 7	L5
24	Analyze the beam by flexibility matrix method	15	CO 7	L5
25	Analyze the portal frame shown in using flexibility method.	15	CO 7	L5

$\square{ }^{-1}$

COURSE PLAN - CAY 2019-20

79		Analyze the beam by flexibility matrix method	15	CO7	L5
80		Analyze the portal frame shown in using flexibility method. Draw SFD and BMD.	15	CO 7	L5

D3. TEACHING PLAN - 3
Module - 5

Title:	Matrix method of Analysis.(Flexibility matrix)	Appr Time:	12 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to determine the moments in indeterminate beams with or without sinking having constant moment of inertia or variable moment of inertia using Flexibility method.	CO9	L5
2	Student should be able to determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using Flexibility method.	CO10	L5
b	Course Schedule		
Class No	o Module Content Covered	CO	Level
41	Matrix Method of Analysis (Flexibility Method) : Introduction	CO9	L5
42	Axes and coordinates	CO9	L5
43	Flexibility matrix	CO9	L5
44	Analysis of continuous beams and plane trusses using system approach	CO10	L5
45	Analysis of simple orthogonal rigid frames using system approach with static indeterminacy ≤ 3	CO10	L5
46	Analysis of simple orthogonal rigid frames using system approach with static indeterminacy ≤ 3	CO9	L5
47	Numericals	CO9	L5
48	Numericals	CO10	L5
49	Numericals	CO10	L5
50	Numericals	$\mathrm{CO10}$	L5
c	Application Areas	CO	Level
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO7	L5
1	Used for the design of Reinforced cement concrete, Pre stressed concrete, steel and Marine structures.	CO8	L5
d	Review Questions	-	-
1	Analyse the continuous beam by flexibility matrix methodand Draw SFD and BMD	C07	L5
2	Analyse the truss by flexibility matrix method and Draw SFD and BMD	C08	L5

COURSE PLAN - CAY 2019-20

	-	-
Appr Time:	12 Hrs	

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs Code:		: 17CV52	Sem:	V	Marks:	30	Time: 75	minute		
Course:		Analysis of Indeterminate Structures								
-	-	Note: Answer any 2 questions, each carry equal marks.						Marks	CO	Level
1		Analyse the continuous beam by flexibility matrix methodand Draw SFD and BMD.						15	CO9	L5
		OR								
2		Analyse the truss by flexibility matrix method and Draw SFD and BMD.						15	CO10	L5
3		Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.						15	COg	L5
		OR								
4		Analyze the portal frame shown in using moment stiffness matrix method. Draw SFD and BMD.						15	CO10	L5

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

COURSE PLAN - CAY 2019-20

	and $B C$ of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E $=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$			
2	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO9	L4
3	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO10	L2
4	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
5	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	5	COg	L2
6	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E $=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$	5	CO10	L2

[^0]

13	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO 10	L2
14	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
15	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	5	CO 9	L2
16	Using stiffness method, determine forces in the members $A B$ and BC of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E $=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$	5	CO 10	L2
17	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO 9	L4
18	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO 10	L2

	$=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$			
37	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	CO9	L4
38	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO10	L2
39	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
40	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	5	CO9	L2
41	Using stiffness method, determine forces in the members AB and $B C$ of a pin jointed frame given in Fig. Q9. The cross sections are indicated in the brackets against each member. E $=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$ \qquad	5	CO10	L2

72	Analyze the frame shown in Fig. using stiffness method. Draw BMD	5	COg	L4
73	Analyze the jointed frame as shown in fig by stiffness matrix method and determine its bending moment diagram.	5	CO10	L2
74	Analyze the continous beam by stiffness matrix method.	5	CO10	L2
75	Analyze the portal frame shown in using Stiffness matrix method. Draw SFD and BMD.	5	COg	L2
76	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Qg. The cross sections are indicated in the brackets against each member. E $=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$	5	CO10	L2

F. EXAM PREPARATION

1. University Model Question Paper

Course: Crs Code:		Analysis of Indeterminate structures					Month / Year		May /2018	
		17Cv52	Sem:	V	Marks:	100			180 minutes	
-	Note	Answer all FIVE full questions. All questions carry equal marks.						Marks	CO	Level
1	a	A horizontal beam ABCD is loaded as shown in Fig. Q1. Plot SFD and BMD. Use slope deflection method. Support B settles by 10 mm . $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2} \mathrm{I}=2.4 \times 10^{6} \mathrm{~mm}^{4}$. Fig. $\mathbf{Q} .1$						20	CO1	L5
		OR								
2	a	Analyze the frame shown in Fig. Q2 using slope deflection method. Draw BMD.						20	CO 2	L5

3	a	Analyze the portal frame shown in Fig. Q3 using moment distribution method. Draw BMD	20	CO 3	L5
		OR			
4	a	Analyze the continuous beam shown in Fig.Q4 using moment distribution method. Draw SFD and BMD. Fig.Q4	20	C04	L5
5	a	Analyze the frame shown in using Kani's method taking advantage of symmetry. Draw BMD.	20	C05	L5
		OR			
6	a	Analyze the beam shown in Fig.Q6 using Kani's method. Draw BMD and elastic curve.	20	C06	L5

		Fig.Q6			
7	a	Using flexibility matrix method, analyze the beam shown in Sketch SFD and BMD.	20	C 07	L5
		OR			
8	a	Analyze the frame shown in using matrix flexibility method. Draw BMD	20	C08	L5
		OR			
9	a	Using stiffness method, determine forces in the members AB and BC of a pin jointed frame given in Fig. Qg. The cross sections are indicated in the brackets against each member. $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$	20	Cog	L5
		OR			
10	a	Analyze the frame shown in Fig. using stiffness method. Draw BMD	20	C010	L5
17CV		Page \# $59 / 67 \quad$ Copyright ©2017. cAAS.	l righ	reserve	

2. SEE Important Questions

Course:	Analysis of Indeterminate Structures									Month / Year	May /2018
Crs Code:	$17 c v 52$	Sem:	3	Marks:	100	Time:	180 minutes				

	5	Analyze the continuous beam shown in Fig.Q4 using slope deflection method. Draw SFD and BMD.	20	C01	2015
2	1	Analyze the continuous beam shown in Fig.Q4 using moment distribution method. Draw SFD and BMD.	20	co3	2012
	2	Analyze the portal frame shown in using moment distribution method. Draw SFD and BMD.	20	CO4	2012
	3	Analyze the portal frame shown in using moment distribution method. Draw SFD and BMD.	20	co4	2013

COURSE PLAN - CAY 2019-20

	5	Analyze the continuous Analyze the shown in using kani's method. Draw SFD and BMD.	20	CO 5	2017
4	1	Analyze the hoam hys floxihility/ matrix mothnd	20	C07	2018
	2	Analyze the beam by flexibility matrix method.	20	CO7	2018
	3	Analyze the portal frame shown in using flexibility method. Draw SFD and BMD.	20	co8	2016
	4	Analyze the portal frame shown in using flexibility method. Draw SFD and BMD.	20	c08	2015

20	c07	2013	

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

Mo $\begin{gathered}\text { dul } \\ \text { e- } \\ \# \\ \#\end{gathered}$	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	Content Teachin g Hours	Blooms' Learning Levels for Content	Final Bloo ms' Level	Identified Action Verbs for Learning	Instructi on Methods for Learning	Assessmen Methods to Measure Learning
A	B	C	D	E	F	G	H
1	SLOPE DEFLECTION METHOD: Introduction, sign convention, development of slope deflection equation, analysis of continuous beams including settlements,	5	$\begin{aligned} & -L 2 \\ & -L 2 \\ & -L 4 \\ & -L 5 \end{aligned}$	L5		Lecture	- Slip Test
1	Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3	5	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 4 \\ & -\mathrm{L} 5 \end{aligned}$	L5		Lecture - Tutorial	Assignment
2	MOMENT DISTRIBUTION METHOD: Introduction, Definition of terms, Development of method, Analysis of continuous beams with support yielding,	5	$\begin{aligned} & -L 2 \\ & -L 4 \\ & -L 5 \end{aligned}$	L5		Lecture	Assignment
2	Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3	5	$\begin{aligned} & -L 2 \\ & -L 4 \\ & -L 5 \\ & \hline \end{aligned}$	L5		Lecture	Slip Test
3	KANI'S METHOD: Introduction, Concept, Relationships between bending moment and deformations, Analysis of continuous beams with and without settlements,	5	$\begin{aligned} & -L 2 \\ & -L 4 \\ & -L 5 \end{aligned}$	L5		Lecture	- Slip Test
3	Analysis of frames with and without sway	5	$\begin{aligned} & -L 2 \\ & -L 4 \\ & -L 5 \end{aligned}$	L5		Lecture - Tutorial	Assignment
4	MATRIX METHOD OF ANALYSIS (FLEXIBILITY METHOD) :Introduction, Axes and coordinates. Flexibility matrix, Analysis of continuous beams and plane trusses using system approach.	5	$\begin{aligned} & -L 2 \\ & -L 4 \\ & -L 5 \end{aligned}$	L5		Lecture - Tutorial	Assignment
4	Analysis of simple orthogonal rigid frames using system approach with static indeterminacy ≤ 3	5	$\begin{aligned} & -L 2 \\ & -L 4 \\ & -L 5 \end{aligned}$	L5		Lecture - Tutorial	Assignment
5	MATRIX METHOD OF ANALYSIS (STIFFNESS METHOD) Introduction, Stiffness matrix. Analysis of continuous beams and plane trusses using system approach..	5	$\begin{aligned} & -L 2 \\ & -L 4 \\ & -L 5 \end{aligned}$	L5		Lecture	-Assignment
5	Analysis of simple orthogonal rigid frames using system approach with kinematic indeterminacy ≤ 3	5	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 4 \\ & -\mathrm{L} 5 \end{aligned}$	L5		Lecture	Assignment

2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

Mo	Learning or	Identified Final Concept	Concept	CO Components	Course Outcome

COURSE PLAN - CAY 2019-20

$\begin{gathered} \text { dul } \\ \mathrm{e}- \\ \# \end{gathered}$	Outcome from study of the Content or Syllabus	Concepts from Content		Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	(1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Student Should be able to ...
A	1	J	K	L	M	N
1		slope	slope			determine the moments in indeterminate beams with without or sinking having constant moment of inertia or variable inertia using slope deflection method.
1		slope				determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using slope deflection method.
2		Distributio n factor carry over moment	Distribution factor			determinerrer rer the moments in indeterminate beams with without or hanking having constant moment of inertia or variable moment of inertia using moment distribution method.
2		Distributio n factor carry over moment				determine the moments in frames subjected to sway or non sway having constant moment of inertia or variable moment of inertia using moment distribution method.
3		Rotation factor kani's box	Rotation factor			determine the moments in indeterminate beams with without or sinking having constant moment of inertia or variable moment of inertia using Kani's method.

COURSE PLAN - CAY 2019-20

3 -			Rotation factor kani's box		

[^0]: pyright ©2017. cAAS. All rights reserved.

